Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c

* Đáp án

* Hướng dẫn giải

A′(a;b;c) là điểm đối xứng với điểm A(−1;0;3) qua mặt phẳng\[\left( P \right):x + 3y - 2z - 7 = 0\]

Khi đó, ta có:\(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {{\rm{AA}}'} //\overrightarrow {{n_P}} }\\{I \in (P)}\end{array}} \right.\) với I là trung điểm của AA’

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{a + 1}}{1} = \frac{{b - 0}}{3} = \frac{{c - 3}}{{ - 2}}}\\{\left( {\frac{{a - 1}}{2}} \right) + 3.\frac{b}{2} - 2.\frac{{c + 3}}{2} - 7 = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{a + 1}}{1} = \frac{b}{3} = \frac{{c - 3}}{{ - 2}}}\\{a + 3b - 2c = 21}\end{array}} \right.\end{array}\)

\[ \Rightarrow \frac{{a + 1}}{1} = \frac{b}{3} = \frac{{c - 3}}{{ - 2}} = \frac{{a + 1 + 3b - 2c + 6}}{{1 + 9 + 4}} = \frac{{21 + 1 + 6}}{{14}} = 2\]

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 6}\\{c = - 1}\end{array}} \right. \Rightarrow A'\left( {1;6; - 1} \right)\)

Vậy\[a + b + c = 1 + 6 + ( - 1) = 6\]

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các bài toán về đường thẳng và mặt phẳng !!

Số câu hỏi: 26

Copyright © 2021 HOCTAP247