D
Đáp án D
Sử dụng các công thức \({\log _{{a^n}}}{b^m} = \frac{m}{b}{\log _a}b{\rm{ }}\left( {0 < a \ne 1,b > 0} \right)\), \({\log _a}x - {\log _a}y = {\log _a}\frac{x}{y}{\rm{ }}\left( {0 < a \ne 1;x,y > 0} \right)\) để đưa phương trình về dạng phương trình logarit cơ bản.
ĐKXĐ: \(\left\{ \begin{array}{l}{x^2} + 4{\rm{x}} > 0\\2{\rm{x}} + 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > 0\\x < - 4\end{array} \right.\\x > \frac{{ - 3}}{2}\end{array} \right. \Leftrightarrow x > 0\).
\({\log _3}\left( {{x^2} + 4{\rm{x}}} \right) + {\log _{\frac{1}{3}}}\left( {2{\rm{x}} + 3} \right) = 0 \Leftrightarrow {\log _2}\left( {{x^2} + 4{\rm{x}}} \right) - {\log _3}\left( {2{\rm{x}} + 3} \right) = 0\)
\( \Leftrightarrow {\log _3}\frac{{{x^2} + 4}}{{2{\rm{x}} + 3}} = 0 \Leftrightarrow \frac{{{x^2} + 4{\rm{x}}}}{{2{\rm{x}} + 3}} = 1 \Leftrightarrow {x^2} + 4{\rm{x}} = 2{\rm{x}} + 3\)
\( \Leftrightarrow {x^2} + 2{\rm{x}} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1{\rm{ }}\left( {tm} \right)\\x = - 3{\rm{ }}\left( {ktm} \right)\end{array} \right. \Rightarrow S = \left\{ 1 \right\}\).
Vậy phương trình đã cho có duy nhất 1 nghiệm.
Chú ý: Lưu ý ĐKXĐ của phương trình.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247