Cho f(x) là hàm số chẵn, liên tục trên đoạn [ -1;1] và

Câu hỏi :

Cho f(x) là hàm số chẵn, liên tục trên đoạn \[\left[ { - 1;1} \right]\]\[\int\limits_{ - 1}^1 {f\left( x \right)dx} = 4\]. Kết quả \[I = \int\limits_{ - 1}^1 {\frac{{f\left( x \right)}}{{1 + {e^x}}}dx} \] bằng

A. \[I = 8\]                 

B. \[I = 4\]                  

C. \[I = 2\]                 

D. \[I = \frac{1}{4}\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Sử dụng phương pháp đổi biến, đặt \(t = - x\).

Đặt \(t = - x \Rightarrow dt = - d{\rm{x}}\).

Đổi cận \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = - 1\\x = - 1 \Rightarrow t = 1\end{array} \right.\), khi đó: \(I = \int\limits_{ - 1}^1 {\frac{{f\left( x \right)}}{{1 + {e^x}}}d{\rm{x}}} = - \int\limits_1^{ - 1} {\frac{{f\left( { - t} \right)dt}}{{1 + {e^{ - t}}}}} = \int\limits_{ - 1}^1 {\frac{{f\left( { - x} \right)d{\rm{x}}}}{{1 + \frac{1}{{{e^x}}}}}} = \int\limits_{ - 1}^1 {\frac{{{e^x}f\left( { - x} \right)d{\rm{x}}}}{{1 + {e^x}}}} \)

Do \(f\left( x \right)\) là hàm số chẵn nên \(f\left( x \right) = f\left( { - x} \right){\rm{ }}\forall {\rm{x}} \in \left[ { - 1;1} \right] \Rightarrow I = \int\limits_{ - 1}^1 {\frac{{{e^x}f\left( x \right)}}{{1 + {e^x}}}d{\rm{x}}} \)

\( \Rightarrow I + I = \int\limits_{ - 1}^1 {\frac{{f\left( x \right)}}{{1 + {e^x}}}d{\rm{x}}} + \int\limits_{ - 1}^1 {\frac{{{e^x}f\left( x \right)}}{{1 + {e^x}}}d{\rm{x}}} = \int\limits_{ - 1}^1 {\frac{{\left( {{e^x} + 1} \right)f\left( x \right)d{\rm{x}}}}{{1 + {e^x}}}} = \int\limits_{ - 1}^1 {f\left( x \right)d{\rm{x}}} = 4 \Rightarrow I = 2\).

Copyright © 2021 HOCTAP247