Cho hàm sốy=f(x)có đạo hàm f'(x) Hàm số

Câu hỏi :

Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] liên tục trên tập số thực và có đồ thị như hình vẽ. Biết \[f\left( { - 1} \right) = \frac{{13}}{4},f\left( 2 \right) = 6\]. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[g\left( x \right) = {f^3}\left( x \right) - 3f\left( x \right)\] trên \[\left[ { - 1;2} \right]\] bằng

A. \[\frac{{1573}}{{64}}.\]                        

B. \[198.\]                  

C. \[\frac{{37}}{4}.\] 

D. \[\frac{{14245}}{{64}}.\]

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ta có ngay \(\frac{{13}}{4} \le f\left( x \right) \le 6,\forall x \in \left[ { - 1;2} \right]\).

Ta có \(g'\left( x \right) = 3{f^2}\left( x \right).f'\left( x \right) - 3f'\left( x \right) = 0 = 3f'\left( x \right).f\left( x \right).\left[ {f\left( x \right) - 1} \right]\).

Với \(\forall x \in \left( { - 1;2} \right) \Rightarrow \left\{ \begin{array}{l}f'\left( x \right) > 0\\f\left( x \right).\left[ {f\left( x \right) - 1} \right] > 0\end{array} \right. \Rightarrow g'\left( x \right) > 0,\forall x \in \left( { - 1;2} \right)\)

\( \Rightarrow \left\{ \begin{array}{l}M = g\left( 2 \right) = {f^3}\left( 2 \right) - 3f\left( 2 \right) = 198\\m = f\left( { - 1} \right) = {f^3}\left( { - 1} \right) - 3f\left( { - 1} \right) = \frac{{1573}}{{64}}\end{array} \right. \Rightarrow M + m = \frac{{14245}}{{64}}\).

Copyright © 2021 HOCTAP247