C
Đáp án C
Tập xác định: \(D = \mathbb{R}\).
Hàm số \(y = {x^3} - 3{{\rm{x}}^2} + 4\) liên tục và có đạo hàm trên đoạn \(\left[ { - 1;3} \right]\).
Đạo hàm: \(y' = 3{{\rm{x}}^2} - 6{\rm{x}}\).
Xét \(y' = 0 \Rightarrow 3{{\rm{x}}^2} - 6{\rm{x}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ { - 1;3} \right]\\x = 2 \in \left[ { - 1;3} \right]\end{array} \right.\).
Ta có: \(y\left( { - 1} \right) = 0,{\rm{ y}}\left( 0 \right) = 4,{\rm{ y}}\left( 2 \right) = 0,{\rm{ y}}\left( 3 \right) = 4\).
Suy ra: \(M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} y = 4,{\rm{ }}m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} y = 0\) nên \(T = {M^2} - {m^2} = 16\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247