Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm \[I\left( {1;2; - 4} \right)\] và diện tích của mặt cầu đó bằng \[36\pi .\]


A. \[{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 4} \right)^2} = 9.\] 


B. \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 4} \right)^2} = 9.\]

C. \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 4} \right)^2} = 3.\]  

D. \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 4} \right)^2} = 9.\]

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ta có diện tích của mặt cầu \({S_{mc}} = 36\pi \Leftrightarrow 4\pi {R^2} = 36\pi \Leftrightarrow R = 3\).

Vậy phương trình mặt cầu tâm \(I\left( {1;2; - 4} \right)\) và bán kính \(R = 3\) là: \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 4} \right)^2} = 9\).

Copyright © 2021 HOCTAP247