Cho khai triển nhị thức Niuton (x^2+2n/x)^n với n thuộc N

Câu hỏi :

Cho khai triển nhị thức Niuton \[{\left( {{x^2} + \frac{{2n}}{x}} \right)^n}\] với \[n \in \mathbb{N},x > 0\]. Biết rằng số hạng thứ 2 của khai triển bằng 98 và n thỏa mãn \[A_n^2 + 6C_n^3 = 36n\]. Trong các giá trị x sau, giá trị nào thỏa mãn?

A. \[x = 3.\]                

B. \[x = 4.\]                

C. \[x = 1.\]                

D. \[x = 2.\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Xét phương trình: \(A_n^2 + 6C_n^3 = 36n\) (*) (Điều kiện: \(n \ge 3\)\(n \in \mathbb{N}\))

Phương trình (*) tương đương với \(n\left( {n - 1} \right) + 6\frac{{n\left( {n - 1} \right).\left( {n - 2} \right)}}{{3!}} = 36n\)

\( \Leftrightarrow n - 1 + \left( {n - 1} \right)\left( {n - 2} \right) = 36\) (do \(n \ge 3\))

\( \Leftrightarrow {n^2} - 2n - 35 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 7{\rm{ }}\left( {tm} \right)\\n = - 5{\rm{ }}\left( l \right)\end{array} \right. \Leftrightarrow n = 7\).

Khi \(n = 7\) ta có khai triển \({\left( {{x^2} + \frac{{14}}{x}} \right)^7} = \sum\limits_{k = 0}^7 {C_7^k.{{\left( {{x^2}} \right)}^{7 - k}}.{{\left( {\frac{{14}}{x}} \right)}^k}} \)

Số hạng thứ \(k + 1\) trong khai triển là \({T_{k + 1}} = C_7^k{.14^k}.{x^{14 - 3k}}\)

Suy ra số hạng thứ 2 trong khai triển (ứng với \(k = 1\)) là \(C_7^1.14.{x^{13}} = 98{{\rm{x}}^{13}}\)

Theo đề bài ra ta có: \(98{{\rm{x}}^{13}} = 98 \Leftrightarrow x = 1\).

Copyright © 2021 HOCTAP247