A
Đáp án A
Gọi cạnh đáy, cạnh bên của hình hộp đứng lần lượt là x và y (\(x,y > 0\))
Ta có: \(V = 100 \Rightarrow {x^2}y = 100 \Rightarrow y = \frac{{100}}{{{x^2}}}\). Khi đó: \(S = 4{\rm{x}}y + {x^2} = 4{\rm{x}}{\rm{.}}\frac{{100}}{{{x^2}}} + {x^2} = \frac{{400}}{x} + {x^2}\)
\( = \frac{{200}}{x} + \frac{{200}}{x} + {x^2} \ge 3\sqrt[3]{{\frac{{200}}{x}.\frac{{200}}{x}.{x^2}}} = 3\sqrt[3]{{{{4.10}^3}}} = 30\sqrt[3]{{40}}\).
Vậy S đạt giá trị nhỏ nhất bằng \(30\sqrt[3]{{40}}\) khi \(\frac{{200}}{x} = {x^2} \Leftrightarrow {x^3} = 200 \Leftrightarrow x = \sqrt[3]{{200}}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247