A
Đáp án A
Giao điểm A của đường thẳng d và mặt phẳng \(\left( P \right)\) thỏa mãn:
\(\left\{ {\begin{array}{*{20}{l}}{\frac{{x + 3}}{2} = y + 1 = \frac{z}{{ - 1}} = t}\\{x - 3y + 2z + 6 = 0}\end{array}} \right. \Rightarrow 2t - 3 - 3(t - 1) - 2t + 6 = 0 \Rightarrow - 3t + 6 = 0 \Rightarrow t = 2\)
Như vậy \(A\left( {1;1; - 2} \right)\). Áp dụng công thức nhanh: \(\overrightarrow {{u_\Delta }} = \left[ {\overrightarrow {{n_P}} ,\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{n_P}} } \right]} \right] = (31;5; - 8) \Rightarrow \Delta :\left\{ {\begin{array}{*{20}{l}}{x = 1 + 31t}\\{y = 1 + 5t}\\{z = - 2 - 8t}\end{array}} \right.\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247