Cho số phức z=a+bi (a,b thuộc R) thỏa mãn z+7+i-|z|(2+i)-0 và

Câu hỏi :

Cho số phức \[z = a + bi\left( {a,b \in \mathbb{R}} \right)\] thỏa mãn \[z + 7 + i - \left| z \right|\left( {2 + i} \right) = 0\] \[\left| z \right| < 3.\] Tính giá trị \[P = a + b.\]

A. \[P = \frac{5}{2}.\]                                 

B. \[P = 7.\]                

C. \[P = - \frac{1}{2}.\]  

D. \[P = 5.\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có: \(z + 7 + i - \left| z \right|\left( {2 + i} \right) = 0 \Leftrightarrow z = \left( {2\left| z \right| - 7} \right) + \left( {\left| z \right| - 1} \right)i\)       (*)

Lấy môđun 2 vế ta được: \({\left| z \right|^2} = {\left( {2\left| z \right| - 7} \right)^2} + {\left( {\left| z \right| - 1} \right)^2} \Leftrightarrow 4{\left| z \right|^2} - 30\left| z \right| + 50 = 0 \Leftrightarrow \left[ \begin{array}{l}\left| z \right| = 5\\\left| z \right| = \frac{5}{2}\end{array} \right.\).

Do \(\left| z \right| < 3\) nên nhận \(\left| z \right| = \frac{5}{2}\) thay vào (*) ta có: \(z = - 2 + \frac{3}{2}i \Rightarrow P = - \frac{1}{2}\).

Copyright © 2021 HOCTAP247