A
Đáp án A
Tập hợp điểm biểu diễn số phức z là đường tròn \(\left( C \right)\) tâm \(I\left( {3; - \sqrt 3 } \right),R = 2\). Gọi M, N lần lượt biểu diễn hai số phức \({z_1},{z_2}\) thì \(MN = \left| {{z_1} - {z_2}} \right| = 4 = 2{\rm{R}}\), suy ra MN là đường kính của \(\left( C \right)\).
Chú ý môđun mỗi số phức chính là các khoảng cách OM, ON.
Áp dụng bất đẳng thức Bunyakovsky kết hợp công thức trung tuyến tam giác OMA ta có:
\(\left| {{z_1}} \right| + \left| {{z_2}} \right| = OM + ON \le \sqrt {2\left( {O{M^2} + O{N^2}} \right)} = \sqrt {4{\rm{O}}{I^2} + M{N^2}} = 8\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247