A
Đáp án A
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {4;5;7} \right)\), bán kính \(R = \sqrt 2 \).
Giả sử trong mặt phẳng \(\left( {IAB} \right)\) tiếp tuyến tại A và B của \(\left( S \right)\) cắt nhau tại C thì IACB là hình vuông cạnh \(IA = R = \sqrt 2 \Rightarrow AB = IA\sqrt 2 = 2\), gọi K là trung điểm của AB thì \(IK = \frac{{AB}}{2} = 1\).
Điểm K thuộc mặt cầu \(\left( {S'} \right)\) tâm \(I\left( {4;5;7} \right)\), bán kính \(R' = 1\).
Gọi E là trung điểm của AB, vì ABNM là hình thang nên KE là đường trung bình của hình thang ABNM do đó \(AM + BN = 2KE\) trong \(K \in \left( {S'} \right)\) và
\(\overrightarrow {{u_{KE}}} = \overrightarrow {{u_d}} = \left( {2;1;1} \right) \Rightarrow KE\) luôn tạo với \(\left( {Oxy} \right):z = 0\) một góc \(\varphi \) không đổi và \(\sin \varphi = \frac{1}{{\sqrt 6 }}\).
Lại có: \[KE\sin \varphi = d\left( {K,(P)} \right) \Rightarrow KE = \sqrt 6 d\left( {K,(P)} \right) \le \sqrt 6 \left[ {d\left( {I;(Oxy)} \right) + R'} \right] = \sqrt 6 \left( {7 + 1} \right) = 8\sqrt 6 \]
Suy ra \(AM + BN = 2KE \le 16\sqrt 6 \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247