Cho hàm số y=f(x) có đạo hàm f'(x)=x(x-1)^2(3x^4+mx^3+1)

Câu hỏi :

Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {3{x^4} + m{x^3} + 1} \right)\] với mọi \[x \in \mathbb{R}.\] Có bao nhiêu số nguyên âm m để hàm số \[g\left( x \right) = f\left( {{x^2}} \right)\] đồng biến trên khoảng \[\left( {0; + \infty } \right)?\]

A. 3                        

B. 4                        

C. 5                        

D. 6

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Ta có: \(g'\left( x \right) = 2{\rm{x}}.f'\left( {{x^2}} \right) = 2{\rm{x}}.{x^4}.{\left( {{x^2} - 1} \right)^2}.\left( {3{{\rm{x}}^8} + m{{\rm{x}}^6} + 1} \right)\)

Hàm số \(g\left( x \right) = f\left( {{x^2}} \right)\) đồng biến trên khoảng \(\left( {0; + \infty } \right) \Leftrightarrow g'\left( x \right) \ge 0\;\left( {\forall x \in \left( {0; + \infty } \right)} \right)\)

\( \Leftrightarrow 3{x^8} + m{x^6} + 1 \ge 0{\rm{ }}\forall x \in \left( {0; + \infty } \right) \Leftrightarrow h\left( x \right) = 3{x^2} + \frac{1}{{{x^6}}} + m \ge 0\;\forall x \in \left( {0; + \infty } \right)\)

\( \Leftrightarrow \mathop {Min}\limits_{\left( {0; + \infty } \right)} h\left( x \right) \ge 0\) (*)

Mặt khác với \(x \in \left( {0; + \infty } \right)\) thì \(3{x^2} + \frac{1}{{{x^6}}} = {x^2} + {x^2} + {x^2} + \frac{1}{{{x^6}}} \ge 4\sqrt[4]{{{x^2}.{x^2}.{x^2}.\frac{1}{{{x^6}}}}} = 4\)

Do đó (*) \( \Leftrightarrow 4 + m \ge 0 \Leftrightarrow m \ge - 4\)

Kết hợp \(m{ \in ^{{\rm{ }} + }} \Rightarrow m = \left\{ { - 4; - 3; - 2; - 1} \right\}.\)

Copyright © 2021 HOCTAP247