Trong không gian Oxyz, cho mặt phẳng (P): x-2y+z-3=0

Câu hỏi :

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và hai điểm \[A\left( {1;0;1} \right),{\rm{ }}B\left( {2;1;0} \right).\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] đi qua hai điểm A và B, đồng thời vuông góc với mặt phẳng (P). Tính \[a + b + c.\]

A. 6.                      

B. 3.                      

C. \[ - 6.\]             

  D. \[ - 3.\]

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Mặt phẳng \[\left( P \right)\] có một VTPT là \[\overrightarrow n = \left( {1; - 2;1} \right)\].

Mặt phẳng \[\left( Q \right)\] qua A, B\[\left( Q \right) \bot \left( P \right) \Rightarrow \left( Q \right)\] sẽ nhận \[\left[ {\overrightarrow {AB} ;\overrightarrow n } \right]\] là một VTPT.

Ta có \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {1;1; - 1} \right)\\\overrightarrow n = \left( {1; - 2;1} \right)\end{array} \right. \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow n } \right] = \left( { - 1; - 2; - 3} \right) \Rightarrow \left( Q \right)\] nhận \[\overrightarrow {{n_Q}} = \left( {1;2;3} \right)\] là một VTPT.

Kết hợp với \[\left( Q \right)\] qua \[A\left( {1;0;1} \right) \Rightarrow \left( Q \right):1.\left( {x - 1} \right) + 2\left( {y - 0} \right) + 3\left( {z - 1} \right) = 0\].

\[ \Rightarrow \left( Q \right):x + 2y + 3z - 4 = 0\]

Copyright © 2021 HOCTAP247