Cho hàm số y=|x|^3-3mx^2+3(5-m)|x|-2m^2+1 Có bao nhiêu giá trị nguyên của

Câu hỏi :

Cho hàm số \[y = {\left| x \right|^3} - 3m{x^2} + 3\left( {5 - m} \right)\left| x \right| - 2{m^2} + 1.\] Có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

A. 2.                      

B. 3.                       

C. 5.                       

D. 4.

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Đặt \[f\left( x \right) = {x^3} - 3m{x^2} + 3\left( {5 - m} \right)x - 2{m^2} + 1 \Rightarrow f'\left( x \right) = 3{x^2} - 6mx + 3\left( {5 - m} \right)\]

YCBT \[ \Leftrightarrow f\left( x \right)\] có đúng 2 điểm cực trị dương \[ \Leftrightarrow f'\left( x \right) = 0\] có đúng 2 nghiệm dương phân biệt \[ \Leftrightarrow {x^2} - 2mx + 5 - m = 0\] có đúng 2 nghiệm dương phân biệt

\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {m^2} + m - 5 > 0\\{x_1} + {x_2} = 2m > 0\\{x_1}{x_2} = 5 - m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + m - 5 > 0\\0 < m < 5\end{array} \right. \Rightarrow m \in \left\{ {2;3;4} \right\}\].

Copyright © 2021 HOCTAP247