B
Đáp án B
Xét \[I = \int\limits_0^1 {\frac{{dx}}{{1 + f\left( x \right)}}} \].
Đặt \[x = 1 - t \Rightarrow I = \int\limits_1^0 {\frac{{d\left( {1 - t} \right)}}{{1 + f\left( {1 - t} \right)}}} = \int\limits_0^1 {\frac{{dt}}{{1 + f\left( {1 - t} \right)}}} = \int\limits_0^1 {\frac{{dx}}{{1 + f\left( {1 - x} \right)}}} \].
Bài ra \[f\left( x \right).f\left( {1 - x} \right) = 1 \Rightarrow f\left( {1 - x} \right) = \frac{1}{{f\left( x \right)}} \Rightarrow I = \int\limits_0^1 {\frac{{dx}}{{1 + \frac{1}{{f\left( x \right)}}}}} = \int\limits_0^1 {\frac{{f\left( x \right)}}{{1 + f\left( x \right)}}dx} \].
\[ \Rightarrow I + I = \int\limits_0^1 {\frac{{dx}}{{1 + f\left( x \right)}}dx} + \int\limits_0^1 {\frac{{f\left( x \right)}}{{1 + f\left( x \right)}}dx} = \int\limits_0^1 {\frac{{1 + f\left( x \right)}}{{1 + f\left( x \right)}}dx} = 1 \Rightarrow I = \frac{1}{2}.\]
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247