Trong không gian Oxyz, cho đường thẳng d: x+4/1=y-2/-2

Câu hỏi :

Trong không gian Oxyz, cho đường thẳng \[d:\frac{{x + 4}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 3}}{1}\] và hai điểm \[A\left( {1;0;1} \right),{\rm{ }}B\left( {2;1;0} \right).\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] đi qua hai điểm A và B đồng thời song song với đường thẳng d. Tính \[a + b + c.\]

A. 3.                      

B. 6.                       

C. \[ - 3.\]              

D. \[ - 6.\]

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Đường thẳng d có một VTCP là \(\overrightarrow u = \left( {1; - 2;1} \right)\).

Mặt phẳng \(\left( Q \right)\) qua A, B\(\left( Q \right){\rm{ // }}\left( P \right) \Rightarrow \left( Q \right)\) sẽ nhận \(\left[ {\overrightarrow {AB} ;\overrightarrow u } \right]\) là một VTPT.

Ta có \(\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {1;1; - 1} \right)\\\overrightarrow u = \left( {1; - 2;1} \right)\end{array} \right. \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow u } \right] = \left( { - 1; - 2; - 3} \right) \Rightarrow \left( Q \right)\) sẽ nhận \(\overrightarrow {{n_Q}} = \left( {1;2;3} \right)\) là một VTPT.

Kết hợp với \(\left( Q \right)\) qua \(A\left( {1;0;1} \right) \Rightarrow 1.\left( {x - 1} \right) + 2\left( {y - 0} \right) + 3\left( {z - 1} \right) = 0\)

\( \Rightarrow \left( Q \right):x + 2y + 3{\rm{z}} - 4 = 0\).

Đường thẳng d qua \(M\left( { - 4;2; - 3} \right)\), rõ ràng \(M \notin \left( Q \right):x + 2y + 3{\rm{z}} - 4 = 0\)

\( \Rightarrow \left( Q \right):x + 2y + 3{\rm{z}} - 4 = 0\) thỏa mãn.

Copyright © 2021 HOCTAP247