Cho hàm số y=f(x)có đạo hàm liên tục trên [0;1]

Câu hỏi :

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\left[ {0;1} \right]\] thỏa mãn \[f'\left( x \right) = \left( {2x + 1} \right){e^x} + f\left( x \right)\]\[f\left( 0 \right) = 0.\] Mệnh đề nào dưới đây là đúng?

A. \[5 < f\left( 1 \right) < 6.\]                        

B. \[7 < f\left( 1 \right) < 8.\]  

C. \[6 < f\left( 1 \right) < 7.\]                 

D. \[f\left( 1 \right) < 5.\]

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có \(\frac{{f'\left( x \right) - f\left( x \right)}}{{{e^x}}} = 2{\rm{x}} + 1 \Rightarrow \frac{{f'\left( x \right).{e^x} - f\left( x \right).{e^x}}}{{{{\left( {{e^x}} \right)}^2}}} = 2{\rm{x}} + 1\)

\( \Rightarrow {\left[ {\frac{{f\left( x \right)}}{{{e^x}}}} \right]^\prime } = 2{\rm{x}} + 1 \Rightarrow \frac{{f\left( x \right)}}{{{e^x}}} = \int {\left( {2{\rm{x}} + 1} \right)d{\rm{x}}} = {x^2} + x + C\).

\(f\left( 0 \right) = 0 \Rightarrow C = 0 \Rightarrow f\left( x \right) = \left( {{x^2} + x} \right){e^x} \Rightarrow f\left( 1 \right) = 2{\rm{e}}\).

Copyright © 2021 HOCTAP247