D
Đáp án D
Ta có \(y' = 2f'\left( {2x + 1} \right) + \frac{1}{{x + \sqrt {{x^2} + 1} }}.\left( {1 + \frac{x}{{\sqrt {{x^2} + 1} }}} \right)\)
\( = 2{\left( {2x} \right)^3}{\left( {2x + 4} \right)^5}\left( {2x + 2} \right)g\left( {2x + 1} \right) - \frac{2}{{\sqrt {{{\left( {2x + 1} \right)}^2} - 2\left( {2x + 1} \right) + 5} }} + \frac{1}{{\sqrt {{x^2} + 1} }}\)
\( = 2{\left( {2x} \right)^3}{\left( {2x + 4} \right)^5}\left( {2x + 2} \right)g\left( {2x + 1} \right) - \frac{2}{{\sqrt {4{x^2} + 4} }} + \frac{1}{{\sqrt {{x^2} + 1} }} < 0\)
\( = 2{\left( {2x} \right)^3}{\left( {2x + 4} \right)^5}\left( {2x + 2} \right) < 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x < - 2}\\{ - 1 < x < 0}\end{array}} \right..\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247