Trong không gian Oxyz, cho đường thẳng d: x-1/1=y-1/-1=z/1

Câu hỏi :

Trong không gian Oxyz, cho đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{1}\] và điểm \[A\left( {1; - 1; - 1} \right).\] Điểm \[H\left( {a;b;c} \right)\] là hình chiếu vuông góc của A trên d. Tính \[a + 2b + c.\]

A. 1.                       

B. 4.                       

C. 2.                       

D. 3.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ta có \[\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = 1 - t\\z = t\end{array} \right.\;\left( {t \in \mathbb{R}} \right) \Rightarrow H\left( {1 + t;1 - t;t} \right) \Rightarrow \overrightarrow {AH} = \left( {t;2 - t;t + 1} \right)\].

Đường thẳng d có một VTCP là \[\overrightarrow u = \left( {1; - 1;1} \right)\].

Do \[AH \bot d\] nên \[\overrightarrow {AH} .\overrightarrow u = 0 \Leftrightarrow t - 2 + t + t + 1 = 0 \Leftrightarrow t = \frac{1}{3} \Rightarrow H\left( {\frac{4}{3};\frac{2}{3};\frac{1}{3}} \right)\].

Copyright © 2021 HOCTAP247