A. \[\frac{{x - 3}}{3} = \frac{{y + 2}}{1} = \frac{{z - 2}}{{ - 2}}.\]
B. \[\frac{{x + 3}}{3} = \frac{{y + 2}}{1} = \frac{{z + 2}}{{ - 2}}.\]
A
Đáp án A
Đường thẳng \[{d_1}\] qua \[A\left( {2; - 3;4} \right)\] và nhận \[\overrightarrow {{u_1}} = \left( {3;1; - 2} \right)\] là một VTCP.
Đường thẳng \[{d_2}\] qua \[B\left( {4; - 1;0} \right)\] và nhận \[\overrightarrow {{u_2}} = \left( {3;1; - 2} \right)\] là một VTCP.
Ta có \[\left\{ \begin{array}{l}A \notin {d_2}\\\overrightarrow {{u_1}} = \overrightarrow {{u_2}} \end{array} \right. \Rightarrow {d_1}//{d_2}\].
Gọi d là đường thẳng cần tìm.
Bài ra d thuộc mặt phẳng chứa \[{d_1}\] và \[{d_2}\], đồng thời cách đều \[{d_1}\] và \[{d_2}\].
Ta có \[A\left( {2; - 3;4} \right) \in {d_1}\] và \[B\left( {4; - 1;0} \right) \in {d_2} \Rightarrow \] trung điểm M của AB sẽ thuộc d.
Điểm \[M\left( {\frac{{2 + 4}}{2};\frac{{ - 3 - 1}}{2};\frac{{4 + 0}}{2}} \right) \Rightarrow M\left( {3; - 2;2} \right) \Rightarrow d\] qua \[M\left( {3; - 2;2} \right)\].
Lại có \[C\left( {5; - 2;2} \right) \in {d_1}\] và \[D\left( {7;0; - 2} \right) \in {d_2} \Rightarrow \] trung điểm N của CD sẽ thuộc d.
Điểm \[N\left( {\frac{{5 + 7}}{2};\frac{{ - 2 + 0}}{2};\frac{{2 - 2}}{2}} \right) \Rightarrow N\left( {6; - 1;0} \right) \Rightarrow d\] qua \[N\left( {6; - 1;0} \right)\].
Đường thẳng d qua \[M\left( {3; - 2;2} \right)\] và nhận \[\overrightarrow {MN} = \left( {3;1; - 2} \right)\] là một VTCP.
\[ \Rightarrow d:\frac{{x - 3}}{3} = \frac{{y + 2}}{1} = \frac{{z - 2}}{{ - 2}}\].
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247