Cho hàm số y = f(x) có đạo hàm liên tục trên R

Câu hỏi :

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ. Bất phương trình \[f\left( x \right) > {x^3} + 4x + m\] nghiệm đúng với mọi \[x \in \left( {0;2} \right)\] khi và chỉ khi

A. \[m < f\left( 0 \right).\]                            

B. \[m \le f\left( 0 \right).\]     

C. \[m < f\left( 2 \right) - 16.\]                

D. \[m \le f\left( 2 \right) - 16.\]

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Xét hàm số \[g\left( x \right) = f\left( x \right) - {x^3} - 4x,x \in \left( {0;2} \right) \Rightarrow g'\left( x \right) = f'\left( x \right) - 3{x^2} - 4\].

Từ hình vẽ, ta thấy với mọi \[x \in \left( {0;2} \right)\] thì \[0 < f'\left( x \right) < 4 \Rightarrow f'\left( x \right) - 4 < 0\]

\[ \Rightarrow g'\left( x \right) < 0,\forall x \in \left( {0;2} \right) \Rightarrow g\left( x \right)\] nghịch biến trên \[\left( {0;2} \right)\].

Khi đó \[m < g\left( x \right),\forall x \in \left( {0;2} \right) \Leftrightarrow m \le g\left( 2 \right) \Leftrightarrow m \le f\left( 2 \right) - 16\].

Copyright © 2021 HOCTAP247