Xét các số thực a,b thỏa mãn điều kiện 1/3

Câu hỏi :

Xét các số thực \[a,{\rm{ }}b\] thỏa mãn điều kiện \[\frac{1}{3} < b < a < 1\]. Tìm giá trị nhỏ nhất của biểu thức \[P = {\log _a}\left( {\frac{{3b - 1}}{4}} \right) + 12\log _{\frac{b}{a}}^2a - 3.\]

A. 13.                     

B. \[\frac{1}{{\sqrt[3]{2}}}.\]              

C. 9.   

D. \[\sqrt[3]{2}.\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có \[\frac{{3b - 1}}{4} \le {b^3} \Leftrightarrow 4{b^3} - 3b + 1 \ge 0 \Leftrightarrow \left( {b + 1} \right)\left( {4{b^2} - 4b + 1} \right) \ge 0\]

\[ \Leftrightarrow \left( {b + 1} \right){\left( {2b - 1} \right)^2} \ge 0\] luôn đúng với \[\frac{1}{3} < b < 1.\]

\[ \Rightarrow {\log _a}\left( {\frac{{3b - 1}}{4}} \right) \ge {\log _a}{b^3}\] (vì \[a < 1\]) \[ \Rightarrow {\log _a}\left( {\frac{{3b - 1}}{4}} \right) \ge 3{\log _a}b\].

Biến đổi \[{\log _{\frac{b}{a}}}a = \frac{1}{{{{\log }_a}\frac{b}{a}}} = \frac{1}{{{{\log }_a}b - 1}}\]

\[ \Rightarrow P \ge 3{\log _a}b + \frac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}} - 3 = 3\left( {{{\log }_a}b - 1} \right) + \frac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}}\].

Bài ra \[\frac{1}{3} < b < a < 1 \Rightarrow {\log _a}b > 1\].

Đặt \[t = {\log _a}b - 1 > 0 \Rightarrow P \ge 3t + \frac{{12}}{{{t^2}}} = \frac{{3t}}{2} + \frac{{3t}}{2} + \frac{{12}}{{{t^2}}} \ge 3.\sqrt {\frac{{3t}}{2}.\frac{{3t}}{2}.\frac{{12}}{{{t^2}}}} = 9\].

Dấu “=” xảy ra \[\left\{ \begin{array}{l}b = \frac{1}{2}\\\frac{{3t}}{2} = \frac{{12}}{{{t^2}}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\t = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\b = {a^3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\a = \frac{1}{{\sqrt[3]{2}}}\end{array} \right.\].

Copyright © 2021 HOCTAP247