Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh

Câu hỏi :

Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh 2, hai mặt phẳng (ABD) và (ACD) vuông góc với nhau. Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD.

A. 22

B. 2

C. 233

D. 63

* Đáp án

B

* Hướng dẫn giải

Chọn B.

Phương pháp:

Ta xác định tâm mặt cầu ngoại tiếp tứ diện ABCD chính là điểm cách đều bốn đỉnh A, B, C, D.

Dựa vào tính chất tam giác cân, hai tam giác bằng nhau, tỉ số lượng giác để chứng minh các đoạn thẳng bằng nhau từ đó tìm được tâm mặt cầu.

Cách giải:

Các tam giác đều ABC và BCD có cạnh 2

BD=DC=BC=AB=AC=2 

Nên tam giác CAD cân tại C và  tam giác BAD cân tại B.

Từ (1) và (2) suy ra tam giác CHB vuông cân tại H có cạnh huyền CB = 2.

Copyright © 2021 HOCTAP247