Cho hình lập phương ABCDA'B'C'D' có cạnh bằng a. Điểm M thuộc đoạn

Câu hỏi :

Cho hình lập phương ABCDA'B'C'D' có cạnh bằng a. Điểm M thuộc đoạn thẳngBC', điểm N thuộc đoạn thẳng AB',MN tạo với mặt phẳng đáy một góc30°. Tìm độ dài nhỏ nhất của đoạn thẳng MN.

A.a2

B.2a3

C.2a51

D.2a5+1

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ý tưởng: 1 - MN phải chăng sẽ là hai điểm đặc biệt nào đó

                 2 – Khi nhận ra M là trung điểm của BA’ thì ta tiến hành tính toán MN qua điểm A’ bằng cách lấy P thuộc BC’!

Dễ có mặt phẳng (BA’C’) vuông góc với AB’. Do đó để MN là nhỏ nhất thì M là giao của AB’ và BA’, N là điểm thuộc BC’ sao cho góc giữa MN và (A’B’C’D’) là 30°.  Gọi P là điểm thuộc BC’sao cho A’P cũng hợp với mặt phẳng đáy một góc 30°, khi đó MN là đường trung bình của tam giác BA’P nên MN=12A'P.

Giả sử độ dài đoạn B’H = x, khi đó PH = HC’ =  a – x (tam giác PC’H vuông cân tại C’), và A'H=A'B'2+B'H2=a2+x2. Theo điều ta đã giả sử ở trên thì góc giữa A’P và (A’B’C’D’) =  30°, do đó

tanPA'H^=PHA'H=axa2+x2=33 hay a2+x2=3ax(1)

Mặt khác ta lại có

A'P=A'H2+HP2=a2+x2+(ax)2=4ax2=2ax (2)

Từ (1) và (2) ta tính được A'P=4a5+1 . Từ đây ta rút ra được MN=2a5+1.

Chọn phương án D.

Copyright © 2021 HOCTAP247