Gọi A, B là hai điểm cực trị của đồ thị hàm số f(x)= -x^3+3x-4 và M(x0;0)

Câu hỏi :

Gọi A, B là hai điểm cực trị của đồ thị hàm số fx=x3+3x4 Mx0;0 là điểm trên trục hoành sao cho tam giác MAB có chu vi nhỏ nhất, đặt T=4x0+2015. Trong các khẳng định dưới đây, khẳng định nào đúng?

A. T= 2017

B.  T= 2019 

C. T=  2018 

D. T= 2016

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có f'x=3x2+3;f'x=0x=1f1=6x=1f1=2 

Suy ra 2 điểm cực trị của hàm số là A1;6;B1;2 

Do đó, chu vi tam giác MAB là  

C=MA+MB+MC=x0+12+62+x0+12+22+32 

Mặt khác x0+12+62+x0+12+22x0+1+1x02+6+22=68

Vậy C68+32. 

Dấu bằng xảy ra khi và chỉ khi x0+16=1x02x0=12T=2017 

Copyright © 2021 HOCTAP247