Cho mặt cầu (S) bán kính R. Hình nón (N) thay đổi có đỉnh và đường tròn

Câu hỏi :

Cho mặt cầu (S) bán kính R. Hình nón (N) thay đổi có đỉnh và đường tròn đáy thuộc mặt cầu (S)  Tính thể tích lớn nhất của khối nón  (N)

A. 32πR381

B. 32R381

C. 32πR327  

D. 32R327

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Theo bài ra, ta có khối nón (N) nội tiếp khối cầu (S).

Giả sử khối nón (N) có đỉnh A, tâm đáy I như hình vẽ bên với h=IA là chiều cao và bán kính đáy r=IK 

Tam giác AMK vuông tại K, có IK2=IA.IMr2=h2Rh

Suy ra VN=13πr2h=π3h22Rh=π3.2Rh2h3

Xét hàm số fh=2Rh2h3 trên khoảng 0;2Rmaxfh=32R327

 

Vậy thể tích cần tính là V=π3.32R327=32πR381

Copyright © 2021 HOCTAP247