Đồ thị hàm số y=x^3-3mx^2+9x-7 cắt trục hoành tại 3 diểm phân biệt

Câu hỏi :

Đồ thị hàm số y=x33mx2+9x7 cắt trục hoành tại 3 diểm phân biệt có hoành độ lập thành cấp số cộng khi:

A. m=1m=1±152

B. m=1+152

C. m=1152

D. m = 1

* Đáp án

A

* Hướng dẫn giải

Chọn A.

Gọi x1;x2;x3  là 3 nghiệm phân biệt của PT x33mx2+9x7=0

Áp dụng định lý Vi – ét cho PT bậc 3 có:

x1+x2+x3=bax1x2+x1x3+x2x3=cax1x2x3=da nên có x1+x2+x3=3m1=3mx1x2+x1x3+x2x3=91=9x1x2x3=71=7

Để x1;x2;x3 lập thành 1 cấp số cộng, ta giả sử u1=x1,u2=x2;u3=x3 tức là x2=x1+dx3=x1=2d

Khi đó ta có:

3x1+3d=3mx1x1+d+x1x1+2d+x1+dx1+2d=9x1x1+dx1+2d=7

 x1=mdmdmd+d+mdmd+2d+md+dmd+2d=9mdmd+dmd+2d=7

x1=mdmdm+mdm+d+mm+d=9mdmm+d=7

x1=mdm2md+m2+md+m2d2=9mdmm+d=7

x1=md3m2d2=9mdmm+d=7x1=mdd2=3m29mm2d2=7

x1=mdd2=3m29mm23m29=7x1=mdd2=3m29m2m2+9=7

x1=mdd2=3m2+92m3+9m=7m=1m=1+152m=1152

Copyright © 2021 HOCTAP247