Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm

Câu hỏi :

Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm đối xứng của B qua C,D và M là trung điểm của đoạn thẳng AB. Gọi (T) là thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MEF). Tính diện tích S của thiết diện (T)

A. S=a22

B. S=a236

C. S=a239

D. S=a26

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Gọi J là trung điểm CD; G là giao điểm của MKAJ; I là giao điểm của MKAO.

Gọi N, P lần lượt là giao điểm của ME với AC, MF với AD. Khi đó (MNP) chính là thiết diện khi cắt tứ diện đều ABCD bởi mp (MEF). Vì BE=BF=2a nên ta cũng có MN=MP, hay tam giác MNP cân tại M, đường cao MG.

Để tính diện tích MNP, ta cần đi tìm MGNP.

G là giao điểm của các đường trung tuyến AJMK trong tam giác ABK nên G là trọng tâm của tam giác ABK, do đó 

và chứng minh dựa vào các tam giác đồng dạng, tính chất tỉ số đồng dạng và các đường cao; đường cao AG, AJ trong tam giác ANPACD).

Áp dụng nhanh: tam giác đều cạnh a có độ dài mỗi đường cao là 

Copyright © 2021 HOCTAP247