Gọi d là đường thẳng đi qua A(2;0) có hệ số góc m cắt đồ thị

Câu hỏi :

Gọi d là đường thẳng đi qua A(2;0) có hệ số góc m cắt đồ thị C:y=x3+6x29x+2 tại ba điểm phân biệt A,B,C Gọi B',C' lần lượt là hình chiếu vuông góc của B,C lên trục tung. Tìm giá trị dương của m để hình thang BB'C'C  có diện tích 

A. m=1

B.m=12

C.m=2

D.m=32

* Đáp án

* Hướng dẫn giải

Đáp án là C.

Không mất tính tổng quát, giả sử

 xC>xB  .

Ta có: d có phương trình 

y=mx2  .

Phương trình hoành độ giao điểm:

mx2=x3+6x29x+2

x=2x24x+1+m=0

Để tồn tại A, B,  thì phương trình  x24x+m+1=0phải có 2 nghiệm phân biệt khác 2

m<3xA=2;xB+xC=4;xBxC=m+1 ; yCyB=mxCxB .

Trường hợp 1: xBxC=m+1>01<m<3*   .

Ta có .

SBB'C'C=BB'+CC'.B'C'2=xB+xC.mxCxB2=84m164m+12=8

.

Đối chiếu điều kiện  (*) ta được m=2.

Trường hợp 2:  

xC>0>xB xBxC=m+1<0m<1<0

 (Loại vì m>0 ).

Copyright © 2021 HOCTAP247