Câu hỏi :

Cho hàm số y=13x3-ax23ax+4 với a là tham số. Biết a0 là giá trị của tham số a để hàm số đã cho đạt cực trị tại hai điểm x1,x2 thỏa mãn x12+2ax2+9aa2+a2x22+2ax1+9a=2. Mệnh đề nào dưới đây đúng?

A.a010;7

B.a07;10

C.a07;3

D.a01;7

* Đáp án

* Hướng dẫn giải

Đáp án là C.

Ta có y'=x22ax3a .

Hàm số có hai điểm cực trị  y'=0có hai nghiệm phân biệt x22ax3a=0  (*) có hai nghiệm phân biệt

Δ'>0a2+3a>0a;30;+  (1).

Khi đó hàm số đạt cực trị tại hai điểm x1  ,  x2là hai nghiệm của phương trình (*).

Ta có x122ax13a=0x12=2ax1+3a ; tương tự x22=2ax2+3a  .

x12+2ax2+9aa2+a2x22+2ax1+9a=2

2ax1+3a+2ax2+9aa2+a22ax2+3a+2ax1+9a=2

2ax1+x2+12aa2+a22ax1+x2+12a=24a2+12aa2+a24a2+12a=2

4a+12a+a4a+12=2

4a+122+a2=2a4a+129a2+72a+144=0

a=4(thỏa mãn điều kiện (1)).

Vậy a0=4

Copyright © 2021 HOCTAP247