Đặt f(n) = (n^2 +n+1)^2. xét dãy số (un) sao cho

Câu hỏi :

Đặt fn=n2+n+12+1. Xét dãy số un sao cho un=f1.f3.f5...f2n1f2.f4.f6...f2n.limnun.

A.limnun=2

B.limnun=13

C.limnun=3

D.limnun12

* Đáp án

* Hướng dẫn giải

Đáp án là D.

Ta có

fn=n2+1+n2+1=n2+12+2n.n2+1+n2+1=n2+1n2+1+2n+1

=n2+1n+12+1

Do đó:f2n1f2n=2n12+12n2+12n2+12n+12+1=2n12+12n+12+1

Suy ra

 un=f1.f3.f5...f2n1f2.f4.f6...f2n=f1f2f3f4f5f6f2n1f2n

=12+132+132+152+152+172+12n12+12n+12+1=22n+12+1=12n2+2n+1

nun=n.12n2+2n+1

limnun=12

Copyright © 2021 HOCTAP247