Cho hình chóp S.ABC có đáy ABCD là hình thang vuông tại

Câu hỏi :

Cho hình chóp S.ABC có đáy ABCD là hình thang vuông tại A và B AB=BC=a, AD=2a. SAvuông góc với mặt phẳng đáy, SA=a Gọi M,N lần lượt là trung điểm của SB và CD Tính cosin góc giữa MN và SAC.

A.15

B.3510

C.5510

D.25

* Đáp án

* Hướng dẫn giải

Đáp án là  C.

Ta dễ chứng minh được tam giácACD  vuông tại C, từ đó chứng minh được CN vuông góc với mặt phẳng (SAC) hay C là hình chiếu vuông góc của N trên (SAC). Đường thẳng MN cắt mặt phẳng (SAC)   tại J xác định như hình vẽ. Suy ra góc giữa MN và (SAC) là góc NJC  .

IN là đương trung bình trong tam giác ACD suy ra IN=a, IH là đường trung bình trong tam giác ABC suy ra IH=12BC=a2 . Dựa vào định lí Talet trong tam giác MHN ta đượcIJ=23MH=23.12SA=13SA=a3 . Dựa vào tam giác JIC  vuông tại I  tính đượcJC=226 .

Ta dễ tính được CN=a22,JN=a103  .

Tam giác NJC vuông tại C nên cosNJC^=JCJN=5510.

Copyright © 2021 HOCTAP247