Cho hình chóp S.ABCD đáy là hình thang cân có AB = CD

Câu hỏi :

Cho hình chóp S.ABCD đáy là hình thang cân có AB = CD = BC = a, AD = 2a. Cạnh bên SA vuông góc với mặt đáy, SA = 2a. Tính thể tích khối cầu ngoại tiếp hình chóp S.BCD

A. 82πa33

B. 16πa33

C. 162πa36

D. 322πa33

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Phương pháp:

Xác định tâm đường tròn ngoại tiếp hình chóp

- Xác định tâm O đường tròn ngoại tiếp đa giác đáy.

- Vẽ đường thẳng (d) qua O và vuông góc đáy.

- Vẽ mặt phẳng trung trực của một cạnh bên bất kì cắt (d) tại I chính là tâm mặt cầu ngoại tiếp cần tìm và bán kính R = IA = IB =IC = …

Cách giải:

ABCD là hình thang cân => ABCD là tứ giác nội tiếp => Đường tròn ngoại tiếp tam giác BCD trùng với đường tròn ngoại tiếp hình thang ABCD.

Gọi I là trung điểm AD. Do AB = CD = BC = a, AD = 2a, ta dễ dàng chứng minh được I là tâm đường tròn ngoại tiếp ABCD => I là tâm đường tròn ngoại tiếp tam giác BCD.

Gọi M, N lần lượt là trung điểm của SD, SA.

Þ MI, MN là các đường trung bình của tam giác SAD

Þ MI//SA, MN//AD

Mà 

Þ MB = MC = MD = MA, MN là trung trực của SA

Þ MB = MC = MD = MS (=MA)

Þ M là tâm khối cầu ngoại tiếp hình chóp S.BCD

Bán kính 

Thể tích mặt cầu:

Copyright © 2021 HOCTAP247