Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi M là trung

Câu hỏi :

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM và DB’

A. a27

B. a4

C. 27a

D. a2

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Phương pháp:

- Sử dụng phương pháp tọa độ hóa.

- Công thức tính khoảng cách giữa hai đường thẳng chéo nhau:

Cho  có VTCP u và qua M; có VTCP v và qua M’

Cách giải:

Gắn hệ trục tọa độ như hình vẽ, trong đó:

A'(0;0;0), B'(0;a;0), C'(a;a;0), D'(a;0;0)

A(0;0;a), B(0;a;a), C(a;a;a); D(a;0;a), M(a/2;a;a)

Đường thẳng AM có VTCP  và qua A(0;0;a)

Đường thẳng DB’ có VTCP  và qua D(a;0;a)

AD =(a;0;0)

Khoảng cách giữa hai đường thẳng AM và DB’: 

 

Ta có:

 

Vây, khoảng cách giữa AM và DB’ là a27 

Copyright © 2021 HOCTAP247