Cho 2 số thực x;y thỏa mãn x;y > bằng 1 và log_3 [(x+1)(y+1)]^(y+1)=9-(x-1)(y+1)

Câu hỏi :

Cho 2 số thực x;y thỏa mãn x,  y1 log3x+1y+1y+1=9x1y+1  Biết giá trị nhỏ nhất của biểu thức P=x3+y357x+y là một số thực có dạng a+b7,a,b. Tính giá trị của a+b 

A. -28

B. -29

C. -30

D. -31

* Đáp án

* Hướng dẫn giải

áp án B

Ta có:log3x+1y+1y+1=9x1y+1y+1log3x+1y+1+x1y+1=9

y+1log3c+1y+1+x+1y+12y=11

y+1log3c+1y+12=9x+1y+1     *

 Nếu  x+1y+1>9VT*>0;VP*<0

Ngược lại nếu  x+1y+1<9VT*<0;VP*>0

Do đó  *x+1y+1=9xy+x+y=8

Khi đó  P=x+y33xyx+y57x+y=x+y338xyx+y57x+y

Đặt  t=x+y2ft=t338tt57t=t3+3t281t

f't=3t2+6t81=0t=1+27Pmin=f1+27=831127a+b=29

Copyright © 2021 HOCTAP247