Trong không gian với hệ toại độ Oxyz , cho ba điểm

Câu hỏi :

Trong không gian với hệ toại độ Oxyz, cho ba điểm A1;2;3,  B2;0;1,  C3;1;1. Gọi M là điểm di động trên mặt phẳng Oyz. Tìm giá trị nhỏ nhất của biểu thức P=3MB+MC+2MA+2MB 

A. 426

B. 42

C. 382

D. 822 

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Gọi I là trung điểm của BCI52;12;1   và E thỏa mãn  EA¯+2EB¯=0¯E53;23;13

Khi đó  P=3MB¯+MC¯+2MA¯+2MB¯=32MI¯+23ME¯=6MI+ME

Dễ thấy I;E nằm cùng phía với mặt phẳng  (Oyz)

Gọi F là điểm đối xứng E qua mp  OyzF53;23;13

Do đó P=6MI+ME=6MI+MF6IF=382  . Vậy  Pmin=382

Copyright © 2021 HOCTAP247