Cho hàm số y=1/3 |x|^3-2x^2+(m-1)|x|+3 . Hỏi có tất cả bao nhiêu giá trị nguyên

Câu hỏi :

Cho hàm số y=13x32x2+m1x+3. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số có đúng 5 điểm cực trị?

A. 5

B. 4

C. 6

D. 3

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Nhắc lại quy tắc vẽ đồ thị hàm số y=fx   từ đồ thị hàm số  y=fx

-         Phần 1: Giữ nguyên phần đồ thị hàm số y=fx  bên phải trục Oy (bỏ phần bên trái)

-         Phần 2: Lấy đối xứng phần đồ thị hàm số y=fx   bên phải trục O qua trục  O

-         Hợp của 2 phần, ta được đồ thị hàm số y=fx

Xét  y=fx=13x32x2+m1x+3với  fx=13x32x2+m1x+3

Để hàm số y=fx  có 5 điểm cực trị  y=fxcó 2 điểm cực trị nằm phía bên phải trục  Oy f'x=0  có 2 nghiệm dương phân biệt x24x+m1=0   có 2 nghiệm dương phân biệt x1,x2

 Δ>0x1+x2>0x1x2>05m>0m1>01<m<5. Kết hợp  mm=2;3;4

Copyright © 2021 HOCTAP247