Cho hình chóp S.ABC có AB=BC=CA=a, SA=SB=SC=a căn3

Câu hỏi :

Cho hình chóp S.ABC AB=BC=CA=a, SA=SB=SC=a3, Mlà điểm bất kì trong không gian. Gọi d là tổng các khoảng cách từ M đến tất cả các đường thẳng AB, BC, CA, SA, SB, SC. Giá trị nhỏ nhất của d bằng:

A. d=2a3.

B. a62.

C. a6.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Gọi E và F là trung điểm của BC và AB và O là trọng tâm tam giác ABC ta có: SOABC

Do AE=BCSO=BCBCSAE. Dựng EKA suy ra EK là đoạn vuông góc cung của SA và BC. Tương tự dựng FI; RL là các đoạn vuông góc chung của 2 cạnh đối diện.

Do tính chất đối xứng ta dễ dàng suy ra EK, FI, RL đồng quy tại điểm M

Như vậy dEK+FI+RL=3EK

Mặc khác OA=a33cosSAO=13sinSAO=223

Do đó: KE=AEsinA=a32223=a63

Do vậy dmin=a6

Copyright © 2021 HOCTAP247