Cho hàm số (C): y=x^3+3x^2+1 .Đường thẳng đi qua điểm A(-3;1)

Câu hỏi :

Cho hàm số C:y=x3+3x2+1.Đường thẳng đi qua điểm A3;1và có hệ số góc bằng k. Xác định k để đường thẳng đó cắt đồ thị tại 3 điểm khác nhau 

A. 0<k<1

B. k>0

C. 0<k9

D. 1<k<9

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp:

Viết phương trình đường thẳng đi qua A và có hệ số góc k .

Biện luận số giao điểm của hai đồ thị là số nghiệm của phương trình hoành độ giao điểm để suy ra kết luận.

Cách giải:

Xét hàm số: y=x3+3x2+1C trên R

Ta có: y'=3x2+6x;y'=03x2+6x=0x=0x=2

Ta có (C) là hàm số bậc 3 xác định trên R, đồ thị của nó có duy nhất 2 cực trị hoặc không có điểm cực trị nào.

Ta có: a=1>0B0;1 là điểm cực tiểu của (C).

Ta có: AB=3;0AB//Ox

=> để thỏa mãn yêu cầu bài toán thì điều kiện cần là k>0 với k là hệ số góc đường thẳng cắt (C) tại 3 điểm phân biệt

Gọi d:y=kx+a với: k>0;k,aR

Ta lại có 

A3;1d1=3k+aa=1+3k

d:y=kx+3k+1

d cắt (C) tại 3 điểm phân biệt

<=> phương trình: kx+3k+1=x3+3x2+11có 3 nghiệm phân biệt.

Phương trình 1x+3x2k=0x=3x=±kvì k>0

Để phương trình (1) có 3 nghiệm phân biệt

Vậy k>0;k9 thỏa mãn yêu cầu của bài.

Chú ý khi giải:

HS cần chú ý cách viết phương trình đường thẳng đi qua 1 điểm và có hệ số góc.

Liên hệ được mối liên hệ giữa số giao điểm và số nghiệm của phương trình để biện luận.

Copyright © 2021 HOCTAP247