Tìm tổng các nghiệm của phương trình sau log căn bậc 4 của 5 (x^2-2x-3))

Câu hỏi :

Tìm tổng các nghiệm của phương trình sau:

A. 0

B. -1

C. 2

D. 3

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp:

Biến đổi phương trình đã cho về 2log5x22x3=log2x22x4 và đặt ẩn phụ t=log5x22x3 đưa về phương trình ẩn t.

Xét hàm ft và tìm nghiệm của ft=0 từ đó tìm ra nghiệm của phương trình.

Cách giải:

Phương trình (1): log5x22x3=2log2x22x4

Điều kiện: x22x3>0x22x4>0x22x4>0

Vì x22x<x22x3,xR

12log5x22x3=log2x22x4*

Đặt t=log5x22x3

x22x3=5tx22x4=5t1>0t>0

Phương trình (*) trở thành:

2t=log25t15t4t1=0

Xét hàm số yt=5t4t1 trên 0;+

Có y't=5tln54tln4

5t>4t,t0;+;ln5>ln4 nên yt=5tln4tln>0,t0;+

ft đồng biến trên 0;+

Bảng biến thiên:

ft=0t=1 là nghiệm duy nhất phương trình ft=0

Với t=1log5x22x3=1

x22x3=5x22x8=0

Theo định lý vi – et ta có tổng hai nghiệm phương trình (1) là: x1+x2=2.

Chú ý khi giải:

HS cần chú ý sử dụng phương pháp xét tính đơn điệu của hàm số để giải phương trình.

Copyright © 2021 HOCTAP247