Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng

Câu hỏi :

Trong không gian Oxyz, cho hai điểm A6;3;4,Ba;b;c. Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng tọa độ (Oxy), (Oxz), (Oyz). Biết rằng M, N, P nằm trên đoạn AB sao cho AM = MN = NP = PB. Tính giá trị của tổng a + b + c.

A. a+b+c = 11

B.a+b+c = -11

C.a+b+c = 17

D.a+b+c = -17

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Các phương trình Oxy:z=0;Oxy:x=0;Oxy:y=0 . Giả sử MxM;yM;0,NxN;0;zN,P0;yp;zp. Tính theo giả thiết có M là trung điểm của AN nên ta có M6+xN2;32;4+zN2 . Do zM=0 nên 4+zN2=0zN=4MxM;32;0 và NxN;0;4 .

Lại có N là trung điểm của MP nên NxM2;2yP34;zP2  .

yN=0zN=4 nên 2yP34=0zP2=4yP=32zP=8  Khi đó P0;32;8.

Từ

xM=6+xN2xM=xM22xMxN=6xM2xN=0xM=4xN=2

 Vậy  M4;32;0,N2;0;4.

Mặt khác  

AB=2ANxB6=2(26)yB+3=2(0+3)zB4=2(44)B(2;3;12)a=2b=3c=12.

Vậy  a+b+c=2+312=11

Copyright © 2021 HOCTAP247