Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và cạnh bên SA

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và cạnh bên SA vuông góc với mặt phẳng (ABC). Biết rằng AB = a , AC = a3 và SAB=60° . Gọi H là hình chiếu vuông góc của A trên cạnh SC. Tính tỷ số thể tích của hai khối SABH  và HABC.

A. 34

B. 112

C. 32

D. 74

* Đáp án

A

* Hướng dẫn giải

Đáp án A 

Ta có SA=ABtanSBA=a3;AC=AB2+BC2=2a .

Tam giác SAC vuông tại A có đường cao AH nên SC=SA2+AC2=a7 và SH.SC=SA2 .

Do đóSHSC=SA2SC2=37 .

Mặt khác VS.ABHVS.ABC=SASA.SBSB.SHSC=SHSC=37 

Suy ra VHABCVS.ABC=47 . Do đó VS.ABHVHABC=34  

 

Copyright © 2021 HOCTAP247