Cho hình chóp tứ diện đều S.ABCD có canh đáy a, cạnh bên hợp

Câu hỏi :

Cho hình chóp tứ diện đều S.ABCD có canh đáy a, cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành 2 phần. Tính tỉ số thể tích của hai phần đó.

A. 75

B. 73

C. 17

D. 15

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Áp dụng định lí Menelaus cho ΔSCD ta có:

NSNC.MCMD.PDPS=1PDPS=12PDSD=13.

Ta có: VP.BQDCVS.ABCD=13.dP,ABCD.SBCDQ13.dS,ABCD.SABCD=13.34=14

VP.BQDC=14VS.ABCD.

VP.NCBVS.ABCD=VP.NCB2.VD.SCB=13.dP,SCB.SΔNCB2.13.dD,SCB.SΔSCB=12.23.12=16VP.NCB=16VS.ABCD.

Do đó VPQD.NBC=VP.BQDC+VP.NCB=512VS.ABCD.

Vậy tỉ số thể tích của 2 phần cần tìm là 75

Copyright © 2021 HOCTAP247