Cho khai triển (1+x+x^2)^n=a0+a1x+a2x^2+...+a2n x^2n

Câu hỏi :

Cho khai triển 1+x+x2n=a0+a1x+a2x2+...+a2nx2n, với n2 và a0,a1,a2,...,a2n là các hệ số. Biết rằng a314=a441 khi đó tổng S=a0+a1+a2+...+a2n bằng

A. S=310.

B. S=311.

C. S=312.

D. S=313.

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có: 1+x+x2n=1+x1+xn=k=0nCknxk1+xk

=k=0nCnkxkj=0kCjkxkTk+1=Cknxkj=0kCjkxk

Ta tính các số hạng như sau:

T0=1;

T1=Cn1Cn2x+Cn1C11x2=nx;T2=Cn2Cn0x2+Cn2C21x3+Cn2C22x4,.... 

Như vậy ta có:

a3=Cn2C21+Cn3C20;a4=Cn2C22+Cn3C31+Cn4C40   

Theo giả thiết  

a314=a441Cn2C21+Cn3C2014=Cn2C22+Cn3C31+Cn4C4041

2.nn12!+nn1n23!14=nn12!+3nn1n23!+nn1n2n34!41

21n299n1110=0n=10

Trong khai triển:

1+x+x210=a0+a1x+a2x2+...+a20x20

cho x = 1 ta được: S=a0+a1+a2+...+a20=310

Copyright © 2021 HOCTAP247