Cho tứ diện ABCD có AB=AD=a căn 2 , BC=BD=a và CA=CD=x .

Câu hỏi :

Cho tứ diện ABCDAB=AD=a2, BC=BD=a và CA=CD=x. Khoảng cách từ B đến mặt phẳng (ACD) bằng a32. Biết thể tích của khối tứ diện bằng a3312. Góc giữa hai mặt phẳng (ACD)(BCD)

A. 600.

B. 450.

C. 900.

D. 1200.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Gọi h là khoảng cách từ BACD

h=a32SΔACD=3VABCDh=3a3312a32=a22 

Gọi M là trung điểm ADCMAD.

CM=2SACDAD=2.a22a2=a22=12AD

ΔACD vuông tại CCA=CD=a

ΔCAD=ΔCBAC.C.CACD^=ACB^=900

ACCDACCBACBCDACDBCD

Hay góc giữa hai mặt phẳng bằng 900

Copyright © 2021 HOCTAP247