Cho hình chóp S.ABCD có đáy ABCD là nửa lục giác đều nội tiếp đường

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là nửa lục giác đều nội tiếp đường tròn đường kính AB=2a,SA=a3 và vuông góc với mặt phẳng (ABCD) . Tính cosin góc giữa hai mặt phẳng (SAD)(SBC) bằng:

A. 22

B. 23

C. 24

D. 25

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Gọi H, K lần lượt là hình chiếu của B, C trên AD

Gọi α là góc giữa 2 mặt phẳng SAD,SBC 

ΔSHK là hình chiếu của ΔSBC trên SADcosα=SSHKSSBC

Ta có HK=BC=2aSSHK=12SA.HK=a3.2a2=a23

Lại có dA;BC=BH=a3dS;BC=a3.2=a6 

Suy ra SSBC=12dS;BC.BC=a36. 

Vậy cosα=a33a36=22

Copyright © 2021 HOCTAP247