Cho tứ diện ABCD có AD vuông góc với (ABC), ABC là tam giác

Câu hỏi :

Cho tứ diện ABCD có ADABC,ABC là tam giác vuông tại B. Biết BC=a, AB= a3,AD=3a. Quay các tam giác ABC và ABD xung quanh đường thẳng AB ta được 2 khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng

A. 33πa316

B. 83πa33

C. 53πa316

D. 43πa316

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Vì hai mặt phẳng (ABC), (ABD) vuông góc với nhau nên bài toán trở thành “Tính thể tích khối tròn xoay khi quay tam giác HAB quanh AB với ABCD là hình thang vuông tại A,B” như hình bên. Hai tam giác BHC và DHA đồng dạng BHDH=HCHA=BCAD=13.

BD=AD2+AB2=2a3;AC=AB2+CB2=2a

Suy ra AH=34AC=34.2a=3a2 BH=14BD=14.2a3=a32.

Diện tích tam giác ABH là:

SΔABH=12.AH.BH=12.3a2.a32=3a238=12.dH;BC.BCdH;BC=2.3a238.a3=3a4.

Vậy thể tích khối tròn xoay cần tính là:

V=13π3a42.a3=33πa216.

Copyright © 2021 HOCTAP247