Cho hình chóp S.ABC có SA=a, SB=b, SC=c, Một mặt phẳng ampha đi qua

Câu hỏi :

Cho hình chóp S.ABC có SA=a,SB=b,SC=c. Một mặt phẳng α đi qua trọng tâm của ΔABC, cắt các cạnh SA,SB,SC lần lượt tại A',B',C'. Tìm giá trị nhỏ nhất của 1SA'2+1SB'2+1SC'2.

A.3a2+b2+c2.

B.2a2+b2+c2.

C.2a2+b2+c2.

D.9a2+b2+c2.

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Giả sử SA=xSA';  SB=ySB';  SC=zSC'  .

Gọi G là trọng tâm tam giác ABC GA+GB+GC=0 .

3GS+SA+SB+SC=0

SG=SA3+SB3+SC3SG=x3.SA'+y3.SB'+z3.SC'  1

Do  A'B'C' đi qua G nên ba vectơ  GA';GB';GC' đồng phẳng

Suy ra tồn tại 3 số  i;m;n,i2+m2+n20 sao cho i.GA'+m.GB'+n.GC'=0

i+m+n.GS+i.SA'+m.SB'+n.SC'=0

SG=ii+m+nSA'+mi+m+nSB'+ni+m+n.SC'  2

Do SG;SA';SB';SC'  không đồng phẳng nên từ (1) và (2) ta có

x3=ii+m+n;  y3=mi+m+n;z3=ni+m+n

x+y+z3=i+m+ni+m+n=1x+y+z=3

Ta có 1SA'2+1SB'2+1SC'2=x2a2+y2b2+z2c2

Áp dụng bất đẳng thức Bunyakovsky cho hai bộ số thực  xa;yb;zc a;b;c ta có .

x2a2+y2b2+z2c2a2+b2+c2x+y+z2

1SA'2+1SB'2+1SC'2x+y+z2a2+b2+c2=3a2+b2+c2

Dấu “=” xảy ra khi x2a2=y2b2=z2c2

Copyright © 2021 HOCTAP247