Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh, a góc

Câu hỏi :

Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh, a góc giữa mặt bên và mặt phẳng đáy là α thoả mãn cosα=13. Mặt phẳng (P) qua AC và vuông góc với mặt phẳng (SAD) chia khối chóp S.ABCD thành hai khối đa diện. Tỉ lệ thể tích hai khối đa diện là gần nhất với giá trị nào trong các giá trị sau

A. 0,11

B. 0,13

C. 0,7

D. 0,9

* Đáp án

A

* Hướng dẫn giải

Đáp án A.

Gọi O là tâm hình vuông ABCD, H là trung điểm AB.

ABSHOSAB;ABCD^=SH;OH^=SHO^=α.cosα=13tanα=3x21=22SO=tanα×OH=a2.

Kẻ CM vuông góc với SD MSDmpPmpACM.

Mặt phẳng AMC chia khối chóp A.ABCD thành hai khối đa diện gồm M.ACD có thể tích là V1 và khối đa diện còn lại có thể tích V2.

Diện tích tam giác SAB là SΔSAB=12.SH.AB=a2.3a2=3a24.

SD=SO2+DO2=a102SΔ.SCD=12.SH.SDCM=3a10.

Tam giác MCD vuông tại M MD=CD2MC2=a10MDSD=15.

Ta có:

VM.ACDVS.ACD=MDSD=15VM.ACD=VS.ABCD10V1=V1+V210V1V2=19.

Copyright © 2021 HOCTAP247